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COMPATIBLE GAUGE APPROACHES FOR H(div) EQUATIONS

P.B. BOCHEV∗, C.M. SIEFERT∗, R.S. TUMINARO∗, J. XU† , AND Y. ZHU†

Abstract. We are concerned with the compatible gauge reformulation for H(div) equations and
the design of fast solvers of the resulting linear algebraic systems as in [5]. We propose an algebraic
reformulation of the discrete H(div) equations along with an algebraic multigrid (AMG) technique
for the reformulated problem. The reformulation uses discrete Hodge decompositions on co-chains to
replace the discrete H(div) equations by an equivalent 2×2 block linear system whose diagonal blocks
are discrete Hodge Laplace operators acting on 2-cochains and 1-cochains respectively. We illustrate
the new technique, using the lowest order Raviart-Thomas elements on structured tetrahedral mesh
in three dimension and present computational results.

1. Introduction. In this paper, we consider general second order elliptic oper-
ators over the Lipschitz polyhedral domain Ω in 3D. Specifically, let Ω be a bounded,
simply connected, and contractible domain in R3 with Lipschitz boundary ∂Ω. We
are looking at the compatible discretization of the following model equation:

−∇(λ∇ · u) + 1
µu = f in Ω,

1
µu · n = 0 on Γ,

λ∇ · u = 0 on Γ∗,
(1.1)

where ∂Ω = Γ ∪ Γ∗ and Γ ∩ Γ∗ = ∅. Here, we assume that λ and µ are positive
throughout the domain, but may possibly vary widely.

The variational formulation of problem (1.1) leads naturally to the Hilbert space
H(div) given by

H(div) :=
{

u ∈
(
L2(Ω)

)3 | ∇ · u ∈ L2(Ω)
}

.

This equation is ubiquitous in problems arising in fluid and solid mechanics [6, 10].
It occurs, in particular, in the solution of second order elliptic partial differential
equations (PDE) by first order least-squares methods or by mixed methods with
augmented Lagrangians, see [1, 11, 18, 19] and the references cited therein. The
importance of H(div)-related problems has prompted vigorous research into efficient
multilevel schemes, see [1, 11, 12, 18, 19].

The method to be developed in the current paper follows closely the idea of
the recent work of Bochev, Hu, Siefert and Tuminaro [5] for Maxwell’s equations.
Specifically, we propose an algebraic reformulation of the discrete H(div) equations
along with a new AMG technique for this reformulated problem. The reformulation
process take advantage of a discrete Hodge decomposition on co-chains to replace the
discrete H(div) equations by an equivalent 2× 2 block linear system whose diagonal
blocks are discrete Hodge Laplace operators acting on 2-cochains and 1-cochains,
respectively. The new AMG algorithm in this paper makes use of the Hiptmair
smoother ([11]) on the fine mesh, uses the canonical interpolations Πdiv

h and Πcurl
h

on H(div) and H(curl) to construct the grid-transfer operators, and then uses the
standard AMG methods for Laplace-type problems on the coarse meshes.

The rest of the paper is organized as follows. Section 2 reviews basic facts about
the discretization framework used in the paper. In Section 3, we apply this framework
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2 Compatible Gauge Approaches for H(div)

to obtain a compatible discretization for the H(div) equations and its equivalent
reformulation. AMG solvers for the reformulated system are developed in Section 4.
In Section 5 we present computational results in three dimension that illustrate the
new technique in the context of smoothed aggregation AMG. In all experiments we
use finite element discretizations based on the lowest order Raviart-Thomas element
and lowest order Nédélec element on structured tetrahedral elements.

2. Compatible discretization framework. In this section, we give a short
introduction of a general framework for compatible discretizations developed in [3].
This framework is based on algebraic topology and includes certain finite element
[4, 17], finite volume [15], and finite difference [16] schemes as particular cases. As a
result, the AMG algorithm developed in this paper is readily applicable to discrete
problems generated by any of these schemes. The presentation here is almost the
same as [5, Section3]. We include this section just for the sake of completeness.

2.1. Computational grid. We consider computational grids Ωh consisting of
0-cells (nodes), 1-cells (edges), 2-cells (faces), and 3-cells (volumes). Formal linear
combinations of k-cells are called k-chains [8]. The sets of k-chains forming Ωh are
denoted by Ck. We will assume that Ωh is such that the collection {C0, C1, C2, C3}
is a complex, i.e., for any c ∈ Ck, ∂kc ∈ Ck−1, where ∂k : Ck 7→ Ck−1 is the boundary
operator on k-chains [7]. Together with the identity ∂k∂k+1 = 0 this gives rise to the
exact sequence

0←− C0
∂1←− C1

∂2←− C2
∂3←− C3 ←− 0 . (2.1)

The dual of Ck is denoted by Ck and its members are called k-cochains [8]. While Ck

and Ck are isomorphic, they have different meanings in our discretization framework.
The sets Ck represent the physical objects that form the grid, while Ck are collections
of real numbers associated with the grid objects. For example, c1 ∈ C1 is a formal sum
of (oriented) grid edges, while its isomorphic image c1 ∈ C1 is a set of real numbers1

assigned to the edges of c1.
Therefore, the elements of C0 provide values associated with the 0-cells (grid

nodes); the elements of C1 are values associated with the 1-cells (grid edges); C2

contains values assigned to the 2-cells (grid faces) of the grid, and C3 are the values
assigned to the 3-cells (grid volumes). We will use C0 and C3 to approximate scalar
functions and C1 and C2 - to approximate vector functions.

The symbols Ck
Γ will denote the subspaces of Ck constrained by zero on the

Dirichlet boundary Γ for k = 0, 1, 2. Such spaces are needed to approximate scalar
and vector functions subject to appropriate boundary conditions2.

2.2. Natural operators. Let 〈·, ·〉 denote the duality pairing of Ck and Ck.
The adjoint of ∂k, defined by 〈a, ∂kc〉 = 〈δka, c〉, induces an operator δk : Ck

Γ 7→ Ck+1
Γ

called the coboundary. This operator satisfies δk+1δk = 0 and gives rise to the exact
sequence

R −→ C0
Γ

δ0−→ C1
Γ

δ1−→ C2
Γ

δ2−→ C3 −→ 0 . (2.2)

1Clearly, Ck are isomorphic to Rk̃, where k̃ = dim Ck. For simplicity, the isomorphic image of

the cochain ck ∈ Ck in Rk̃ will be denoted by the same symbol.
2For example, C0

Γ approximates scalar functions such that φ = 0 on Γ; C1
Γ can be used to

approximate vector fields E such that n×E = 0 on Γ. The space C2
Γ is appropriate for vector fields

B that have a vanishing normal component on Γ.
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It is not hard to see that the matrix representation Dk of δk is the signed incidence
matrix between Ck and Ck+1. Following [14] we call D0, D1, and D2 natural approx-
imations of the gradient, curl and divergence operators. Note that from δk+1δk = 0
it follows that

Dk+1Dk = 0; k = 0, 1, 2 , (2.3)

and so our natural operators mimic the well-known vector calculus identities ∇×∇ =
0, and ∇·∇× = 0. In [13], it is pointed out that natural operations are not enough to
provide compatible discretizations of the basic second order operators because their
ranges and domains do not match. For example, we cannot approximate ∇×∇× by
D1D1 because D1 is in general a rectangular matrix. The number of its columns and
rows equals the number of 1-cells and 2-cells in the grid, which are not the same.

2.3. Metric structures and derived operators. Let Mk : Ck
Γ 7→ Ck

Γ; k =
0, 1, 2, 3 denote symmetric positive definite matrices. The matrix Mk endows Ck

Γ with
an inner product structure,

(ak, bk)Ck = (ak)T Mk(bk) . (2.4)

The matrices M0 and M3 approximate weighted L2 inner products of scalar functions:

M0 −→
∫

Ω

γpp̂ dΩ ; M3 −→
∫

Ω

λφφ̂ dΩ ,

while M1 and M2 approximate the weighted L2 inner products of vector functions

M1 −→
∫

Ω

σEÊ dΩ ; M2 −→
∫

Ω

µ−1BB̂ dΩ .

We will also use the notation M0(γ), M1(σ), M2(µ−1) and M3(λ) to show the depen-
dency of the coefficients of these mass matrices explicitly.

We define the derived operator D∗
k : Ck+1

Γ 7→ Ck
Γ as the adjoint of Dk with respect

to the inner product (2.4):

(D∗
kak+1, bk)Ck = (ak+1, Dkbk)Ck+1 . (2.5)

From (2.5) it is easy to see that for k = 0, 1, 2

D∗
k = M−1

k DT
k Mk+1 . (2.6)

The matrices D∗
2, D∗

1 and D∗
0 provide a second set of discrete differential operators.

Specifically, they are approximations of scaled gradient, curl and divergence operators

D∗
2 → −µ∇λ ; D∗

1 → σ−1∇× µ−1 ; D∗
0 → −γ−1∇ · σ ,

augmented with the boundary conditions

λφ = 0 ; n× µ−1B = 0 ; and n · σE = 0 on Γ∗ ,

respectively. Using (2.6) and (2.3)

D∗
kD∗

k+1 = M−1
k DT

k Mk+1M−1
k+1DT

k+1Mk+2 = M−1
k DT

k DT
k+1Mk+2 = 0 ,
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R I−−−−→ H1(Ω) ∇−−−−→ H(curl) ∇×−−−−→ H(div) ∇·−−−−→ L2(Ω) −−−−→ 0yΠgrad
h

yΠcurl
h

yΠdiv
h

yΠ0
h

R I−−−−→ Vh(grad) D0−−−−→
DT

0

Vh(curl) D1−−−−→
DT

1

Vh(div) D2−−−−→
DT

2

Vh(0) −−−−→ 0yM0(γ)

yM1(σ)

yM2(µ
−1)

yM3(λ)

R I←−−−− Vh(grad)
D∗0←−−−− Vh(curl)

D∗1←−−−− Vh(div)
D∗2←−−−− Vh(0) ←−−−− 0

Fig. 2.1. De Rahm Complex and the lowest order finite element spaces

and so, the basic vector calculus identities hold for the derived operators as well. The
commuting diagram, and the relationships among the operators defined above can be
summarized in Figure 2.1. Here, the operators Πgrad

h , Πcurl
h , Πdiv

h , and Π0
h are the

canonical interpolations on H1(Ω), H(curl), H(div), and L2(Ω) to the corresponding
finite element spaces Vh(grad), Vh(curl), Vh(div), and Vh(0) respectively. The lower
half of the commuting diagram above presents the relationships among the operators.
For example, from this diagram we can easily find out that

D∗
2 = M−1

2 DT
2 M3.

Because the range of Dk is contained in the domain of D∗
k and vice versa we can use

the natural and the derived operators to define discrete versions of the basic second
order differential operators, including a discrete Hodge Laplace operator. Specifically,
for k = 0, 1, 2 we have the second order operators

D∗
kDk = M−1

k DT
k Mk+1Dk : Ck

Γ 7→ Ck
Γ (2.7)

DkD∗
k = DkM−1

k DT
k Mk+1 : Ck+1

Γ 7→ Ck+1
Γ (2.8)

and the discrete Hodge Laplacian

Lk : Ck
Γ 7→ Ck

Γ ; Lk = D∗
kDk + Dk−1D∗

k−1 ; k = 0, 1, 2, 3 (2.9)

with the understanding that D3 = 0 and D∗
−1 = 0.

The discrete operators in (2.7)-(2.9) approximate basic second order elliptic dif-
ferential operators. In §3.1 we will use these operators to motivate and explain our
reformulation strategy.

Similar to [5], we also introduce a second set of inner products defined by the
matrices M̃k, (k = 0, 1, 2, 3) that uses a unit weight, i.e.,

M̃k →
∫

Ω

ukvkdΩ, uk, vk ∈ Ck
Γ.
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These inner products can be used to define a second set of derived operators D̃∗
k :

Ck+1
Γ 7→ D̃∗

k given

D̃∗
k = M−1

k DT
k M̃k+1, k = 0, 1, 2

respectively, and such that D̃∗
kD̃∗

k+1 = 0. These operators give rise to the discrete
Hodge Laplace operators

L̃k : Ck
Γ 7→ Ck

Γ ; L̃k = D̃∗
kDk ;

that are different versions of Lk respectively.
The following general result from [3] provides the results needed for the reformu-

lation of the discrete H(div) equation.

Theorem 2.1. The size of the kernel of the analytic and discrete Hodge Lapla-
cians is the same.

Theorem 2.1 reveals that the null-space of the discrete Hodge Laplacian and, by
extension the structure of the discrete Hodge decomposition of discrete functions in
Ck

Γ, are topological invariants that are independent of the particular choice of metric,
i.e., the matrices Mk. As a result, the assertion of this theorem is valid for both L0, L1,
L2, and L̃0, L̃1, L̃2. The properties of these operators, relevant to the reformulation
process, are summarized in the following corollary, which is a generalization of [5,
Corollary 3.2].

Corollary 2.2. Assume that Ω is contractible. Then, every uk ∈ Ck
Γ (k = 1, 2)

has the discrete Hodge decomposition

uk = Dk−1p
k−1 + D̃∗

kbk+1 (2.10)

where pk−1 ∈ Ck−1
Γ and bk+1 ∈ Ck+1

Γ solve the equations

D̃∗
k−1Dk−1p

k−1 = D̃∗
k−1u

k and DkD̃∗
kbk+1 = Dkuk , (2.11)

respectively.

3. Compatible discretization of H(div) equation. Using the discrete oper-
ators defined in the last section, a compatible discretization of the H(div) equation
(1.1) is straightforward. Specifically, we approximate u by a 2-cochain u2 ∈ C2

Γ that
is associated with the 2-cells (the faces) of the mesh that are not in Γ. Then the com-
patible discrete version of the ∇∇· operator is provided by the second order discrete
operator D∗

2D2. As a result, the compatible, fully discrete equation of (1.1) is given
by

(DT
2 M3D2 + M2)u2 = f2, (3.1)

with the matrix M3 containing the material parameter λ and the matrix M2 containing
µ−1 and f2 ∈ C2

Γ is a discrete version of f in (1.1). An equivalent “weak” form of
(3.1) is given by the variational equation: seek u2 ∈ C2

Γ such that(
u2, û2

)
C2 +

(
D2u

2, D2û
2
)
C3 =

(
f2, û2

)
∀û2 ∈ C2

Γ . (3.2)
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3.1. Reformulation. Following [5] for Maxwell’s equations, we intend on form-
ing the Hodge Laplacian, which here corresponds to adding a ∇×∇× term, namely

L2 = D∗
2D2 + D1D∗

1. (3.3)

The following main theorem states an analogue of Theorem 4.2 in [5].
Theorem 3.1. Assume that u2 is a solution of (3.1) and let

u2 = D1e
1 + D̃∗

2b
3 (3.4)

denote its discrete Hodge decomposition with respect to the inner product induced by
M̃2. The pair (a2, e1), where a2 = D̃∗

2b
3, solves the linear system M2 + DT

2 M3D2 + M̃2D1M−1
1 DT

1 M̃2 M2D1

DT
1 M2 DT

1 M2D1

[
a2

e1

]
=

[ M2f
2

DT
1 M2f

2

]
. (3.5)

Proof. Denoting a2 = D̃∗
2b

3, and applying the decomposition (3.4) to the weak
form (3.2) gives(

D1e
1 + a2, û2

)
C2

Γ
+

(
D2a

2, D2û
2
)
C3 =

(
f2, û2

)
C2

Γ
, ∀û2 ∈ C2

Γ.

In the above equality, we used the fact that D2D1 ≡ 0. We note that the assumed
Hodge decomposition implies that D̃∗

1a
2 = 0 (since D̃∗

1D̃∗
2 = 0), thus(

D̃∗
1a

2, D̃∗
1û

2
)

C1
Γ

≡ 0, ∀û2 ∈ C2
Γ.

As a result, this term can be added to the last equation to obtain:(
D1e

1 + a2, û2
)
C2

Γ
+

(
D2a

2, D2û
2
)
C3 +

(
D̃∗

1a
2, D̃∗

1û
2
)

C1
Γ

=
(
f2, û2

)
C2

Γ
, ∀û2 ∈ C2

Γ.

It is easy to see that the above weak form is equivalent to the following linear system:

M2a
2 +

(
DT

2 M3D2 + M̃2D1M−1
1 DT

1 M̃2

)
+ M2D1e

1 = M2f
2

which is the first equation in (3.5).
Applying the decomposition (3.4) to (3.1), and then multiplying by D∗

1 on both
sides gives

D∗
1a

2 + D∗
1D1e

1 = D∗
1f

2.

Noticing that by definition D∗
1 = M−1

1 DT
1 M2, the second set of equations in the block

system follows by multiplying M1 on both sides. This completes the proof.
Here, we should notice that the (2,2) block D∗

1D1 is singular. A further decom-
position [5, Corollary 3.2] of

e1 = D0e
0 + D̃∗

1b
2 := D0e

0 + a1

yields the following block system[
A11 M2D1

DT
1 M2 A22

] [
a2

a1

]
=

[ M2f
2

DT
1 M2f

2

]
(3.6)
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where A11 = M2+DT
2 M3D2+M̃2D1M−1

1 DT
1 M̃2 and A22 = DT

1 M2D1+M̃1D0M−1
0 D0M̃1.

In the above formulation, we used the fact that D1D0 = 0 and D̃∗
0D̃∗

1 = 0.

Remark 3.2. The reformulation (3.6) seems more complicated than the original
equation (3.1) that we are actually solving. The idea here is try to use the diagonal
blocks A11 and A22 as preconditioner of (3.1), which is the main focus of the next
section.

It is interesting to notice that during this reformulation procedure, the gauge
term in the A11 and A22 blocks seems to be indispensable. As was point out in
[5], these terms play an important roles in avoiding the large null-space caused by
∇∇· operator and ∇ × ∇× operator respectively. While to form M̃2D1M−1

1 DT
1 M̃2

and M̃1D0M−1
0 D0M̃1 requires the inversion of M1 and M0. Even if we can use mass

lumping to simplify the computation, it makes the system more complicated and ruins
the sparse patten of the original system. The interesting fact is that according to the
numerical tests (see Section 5 for more details), it is not so clear now if these gauge
terms are necessary or not. We need a more rigorous investigation of the roles of
these gauge terms for more complex problems.

4. Multigrid solvers. Now we are in position to combine the reformulation and
preconditioning to develop a linear solver for the compatible discretization (3.1) of
the H(div) equation (1.1). Similar to the algorithm in [5], we focus on developing the
AMG block preconditioners.

The approach considered in this paper focuses on developing AMG methods for
the (1,1) and (2,2) blocks in (3.6) separately. Note that these diagonal blocks are
Laplace-like. Once constructed, these AMG solvers are combined as a Jacobi-like
preconditioner to precondition (1.1).

We propose an AMG technique for the whole 2 × 2 system which employs a
Hiptmair smoother (see for example [11]) at the finest level, but allows subsequent
levels and transfers of the (1,1) and (2,2) blocks to be handled with the standard
AMG method. To do this, the face element of the (1,1) block and the edge element
version of the (2,2) block must be converted to a more standard nodal form on the
coarse mesh. This is accomplished by two special prolongators that not only transfers
solutions from a coarse to a fine solution but also transfers solutions from a nodal to a
face or edge representation, respectively. The net effect of these special prolongators
is that the corresponding Galerkin projection of the (1,1) and (2,2) block will, in fact,
yield a coarse operator resembling a vector nodal Laplacian which is amenable to any
standard AMG method for further coarsening.

4.1. The specialized prolongators. As discussed earlier, in order to use the
standard AMG solvers for the (1,1) and (2,2) block, we must convert the face element
(for the (1,1)-block) and the edge element (for the (2,2)-block) into the standard nodal
form. To do this, we define specialized prolongators P11 and P22 to transfer solutions
from a nodal to a face and edge representation respectively. Instead of introducing
the near null-space to define the prolongators as was done in [5], here we make use of
the interpolation Πdiv

h and Πcurl
h (see Figure 2.1) as in [2] and [12].

There are many ways to obtain aggregates corresponding to nodes, see [5] for
more details. In this paper, for simplicity we use perfect aggregation. By “perfect”,
we mean that the aggregates are formed manually. Note that we only need to form
these aggregates on the finest level. Once the aggregates are formed, Πdiv

h and Πcurl
h

must also be computed. The detailed construction of the special prolongators for the
(1,1) and (2,2) block is given in Algorithm 1. Notice that the net effect of P11 is to
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interpolate coarse nodal quantities to fine face-oriented quantities, and the effect of
P22 is to interpolate coarse nodal quantities to fine edge-oriented quantities.

Algorithm 1: [P11, P22]=Coarse Node Prolongators()

{Ai} ←Aggregate manually;1

For each fine node ni and each aggregate Aj define2

(Pnf )i,j =
{

1, if ni ∈ Aj

0, otherwise .

P11 = Πdiv
h Pnf ;3

P22 = Πcurl
h Pnf ;4

The Galerkin coarse discretizations are given by

AH
11 = PT

11A11P11, AH
22 = PT

22A22P22

where A11 and A22 are the (1,1) and (2,2) block of (3.6), AH
11 and AH

22 refer to their
projections on a coarse mesh, respectively.

4.2. Relaxation. As before, we consider the following hybrid scheme. Suppose
that the conjugate gradient iteration is actually applied to (3.1) and that (3.6) is
only used within the preconditioner. To do this, it is necessary to convert residuals of
(3.1) to right hand sides of (3.6) within the preconditioner. This is done by applying
[I D1]T to the residual. Approximate solutions to (3.6) are then converted back to
a form suitable for (3.1) via D1a

1 + a2.
Algorithm 2 illustrates such a smoother proposed by Hiptmair that combines stan-

dard smoothing of the original equations with standard smoothing of the equations
projected to the null-space [11].

Algorithm 2: ũ = FineRelaxation(A, D1, ũ, b)

ũ← StandardRelaxation(A, ũ, b) ;1

c← StandardRelaxation(DT
1 AD1, 0, DT

1 (b−Aũ) ;2

ũ← ũ + D1c ;3

ũ← StandardRelaxation(A, ũ, b) ;4

The key is that the error is smooth after this initial relaxation. Since the error
is smooth, fine grid relaxation may be omitted from the AMG V-cycles in Solve(), as
(3.1) and (1.1) are equivalent.

It is important to realize that this special smoother is only needed on the finest
level. A standard smoother can be used on coarse levels within the AMG procedures
for the (1,1) and (2,2) blocks. Finally, an additive version of the Hiptmair smoother
may also be considered for FineRelaxation().

4.3. AMG algorithm preconditioner. We now give the entire AMG-based
preconditioner for the block Jacobi version in Algorithm 3. PreFineRelaxation() is
identical to Algorithm 2 except step one is omitted. This also avoids the resid-
ual calculation in step two as the initial guess to a preconditioner is always zero.
PostFineRelaxation() is identical to Algorithm 2 except step four is omitted to keep
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the preconditioner symmetric when StandardRelaxation() employs a symmetric algo-
rithm. Of course, residual calculations can also be avoided using additive forms of
this smoother.

The algorithm essentially involves two AMG solves for nodal vector Laplacians:
AH

11 corresponding to the (1,1) block and AH
22 corresponding to the (2,2) block. In

addition, some relaxation must be performed on the original fine mesh system. Specif-
ically, there are three major components of the preconditioner.

(1) Hiptmair smoother for H(div) (see also Hiptmair [11]).
(2) AMG for PT

11A11P11 within the (1,1)-block.
(3) AMG for PT

22A22P22 within the (2,2)-block.
The detailed algorithm is listed as follows:

Algorithm 3: ũ =Block Preconditioner(r)

% Setup Phase

Form AH
11 ← PT

11A11P11 efficiently;
Standard AMG Setup(AH

11);
Form AH

22 ← PT
22A22P22 efficiently;

Standard AMG Setup(AH
22);

—————————————————————————————— ;

% Solve Phase

ũ← PreFineRelaxation(DT
2 M3D2 + M2, D1, 0, r);

r̃ ← r − (DT
2 M3D2 + M2)ũ;

% Perform V-cycles on AH
11 and AH

22

a← Standard AMG Vcycle(AH
11, 0, PT

11r̃) ;
p← Standard AMG Vcycle(AH

22, 0, PT
22DT

1 r̃) ;
ũ ← ũ + P11a + D1P22p ;
ũ ← PostFineRelaxation(DT

2 M3D2 + M2, D1, ũ, r) ;

5. Numerical results. All the numerical experiments are conducted in a three-
dimensional unit cube domain Ω = {(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1} with homogeneous
Neumann boundary condition. The domain is meshed by uniform cubes, and each
cube is divided into 6 tetrahedra.

The proposed solver was implemented using CG in MATLAB. The first level
and the first grid transfer of Algorithm 3 is also implemented in MATLAB. ML’s
smoothed aggregation solver is used for AH

11 and AH
22, through the mlmex MATLAB

interface [9]. A single V-cycle of AMG is used for both the (1,1) and (2,2) block,
using the efficient variant of Algorithm 2 (smoother). Unless otherwise stated, we use
two steps of symmetric Gauss-Seidel sub-smoothing on both faces and edges. For all
experiments the CG tolerance is 1× 10−10.

5.1. Constant coefficients. As the first experiment, we consider the constant
coefficients case. We assume that λ = µ = 1 in Ω. Table 5.1 reports the number of
iterations with different meshsize. We note that the number of iterations are almost
identical whether we include the gauge terms in the (1,1), and (2,2)-block or not. By
this reason, we will omit the gauge term in the following numerical experiments.
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Table 5.1
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with constant

coefficients, using Algorithm 3. The size of the problem and the number of SGS smoothing steps are
varied.

Grid 93 123 153 183 213 243 273

2 SGS Steps gauge 12 12 13 13 13 13 13
No gauge 11 13 13 14 14 14 15

3 SGS Steps gauge 10 11 11 12 12 12 12
No gauge 9 10 11 12 12 13 13

4 SGS Steps gauge 9 10 10 11 11 11 11
No gauge 8 10 10 10 11 11 11

Table 5.2
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump

coefficients, using Algorithm 3. µ0 varies inside [1/3, 2/3]3, and 1 elsewhere, and λ ≡ 1.

µ−1
0

Grid 10−8 10−7 10−6 10−5 10−4 103 10−2 10−1 1
93 11 11 11 11 11 11 11 11 11
183 15 15 15 15 16 16 15 15 14
273 16 16 19 18 18 18 19 17 15

5.2. Variable µ. We experiment with jumps in µ by considering two regions
with constant values of µ. Specifically, define

Ω0 =
{

(x, y, z) :
1
3
≤ x, y, z ≤ 2

3

}
, Ω1 = Ω \ Ω0;

let µ ≡ 1 in Ω1 and choose µ = µ0 to be a constant inside Ω0. λ is fixed to be
1 throughout the whole domain Ω. Table 5.2 reports the number of iterations on
different meshsize. Note that the number of iterations are quite robust with respect
to the variation of the coefficient µ.

5.3. Variable λ. We now consider the jump on λ. Same as before, we choose
λ = λ0 to be a constant which varies from 10−4 to 104 inside the domain Ω0, and λ = 1
elsewhere. This time, we fix µ to be 1 in the whole domain Ω. Table 5.3 reports the
number of iterations on different meshsize. Again, the number of iterations remains
fairly constant.

6. Conclusions. In this paper, we proposed an AMG based preconditioner for
the H(div) equation. We reformulated the equation by using the compatible gauge
approaches, and formed a 2 × 2 system which is equivalent to the original discrete
linear equations. Then we combined the AMG solvers for the (1,1) and (2,2) blocks
of this system in certain way, and used it as the preconditioner of the original linear
system. We also presented some numerical experiments to show the robustness of this
algorithm. These experiments showed that the algorithm is very robust even with the
presence of large jump coefficients.
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Table 5.3
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump

coefficients, using Algorithm 3. λ0 varies inside [1/3, 2/3]3, and 1 elsewhere, and µ ≡ 1.

λ0

Grid 10−4 10−3 10−2 10−1 1 101 102 103 104

93 17 16 14 12 11 11 11 11 9
183 21 20 18 16 14 14 14 12 12
273 22 21 21 17 15 15 14 13 13

[1] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H(div) and applications,
MATHEMATICS OF COMPUTATION, 66 (1997), pp. 957–984.

[2] R. Beck, Algebraic multigrid by component splitting for edge elements on simplicial triangu-
lations, Tech. Report SC 99-40, Zuse Institute Berlin, December 1999.

[3] P. Bochev and J. Hyman, Principles of mimetic discretizations of differential operators, in
Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, and
M. Shashkov, eds., Springer-Verlag, 2006.

[4] P. Bochev and A. Robinson, Matching algorithms with physics: exact sequences of finite
element spaces, in Preservation of stability under discretization, D. Estep and S. Tavener,
eds., Philadelphia, 2001, SIAM, pp. 145–165.

[5] P. B. Bochev, J. J. Hu, C. M. Siefert, and R. S. Tuminaro, An algebraic multigrid ap-
proach based on a compatible gauge reformulation of Maxwell’s equations, Tech. Report
SAND2007-1633J, Sandia National Laboratory, 2007.

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer
series in computational mathematics, Springer-Verlag, 1991.

[7] S. Cairns, Introductory topology, Ronald Press Co., New York, 1961.
[8] A. Dezin, Multidimensional analysis and discrete models, CRC Press, Boca Raton, 1995.
[9] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, ML 5.0 smoothed aggregation user’s

guide, Tech. Report SAND2006-2649, Sandia National Laboratories, 2006.
[10] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer-

Verlag, Berlin, 1986. Theory and algorithms.
[11] R. Hiptmair, Multigrid method for H(div) in three dimensions, Electron. Trans. Numer. Anal.,

6 (1997), pp. 133–152. Special issue on multilevel methods (Copper Mountain, CO, 1997).
[12] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,

tech. report, 2006.
[13] J. Hyman and M. Shashkov, Adjoint operators for the natural discretizations of the diver-

gence, gradient and curl on logically rectangular grids, Appl. Num. Math., 25 (1997),
pp. 413–442.

[14] , Natural discretizations for the divergence, gradient and curl on logically rectangular
grids, Comput. Math. Appl., 33 (1997), pp. 88–104.

[15] R. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29
(1992), pp. 32–56.

[16] M. Shashkov, Conservative finite difference methods on general grids, CRC Press, Boca Raton,
FL, 1996.

[17] J. van Welij, Calculation of eddy currents in terms of H on hexahedra, IEEE Transactions
on Magnetics, 21 (1985), pp. 2239–2241.

[18] P. S. Vassilevski and J. Wang, Multilevel iterative methods for mixed finite element dis-
cretizations of elliptic problems, Numerische Mathematik, 63 (1992), pp. 503–520.

[19] B. I. Wohlmuth, A. Toselli, and O. B. Widlund, An iterative substructuring method for
Raviart–Thomas vector fields in three dimensions, SIAM Journal on Numerical Analysis,
37 (2000), pp. 1657–1676.


